Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
mBio ; 14(1): e0287822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36533926

ABSTRACT

Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.


Subject(s)
Colletotrichum , Zea mays , Metagenomics , Ecosystem , Base Sequence , Plant Diseases , Genetic Variation
2.
Arch Virol ; 167(1): 261-265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34757504

ABSTRACT

In the present study we report the identification of a novel partitivirus recovered from Miscanthus sinensis, for which the provisional name "silvergrass cryptic virus 1" (SgCV-1) is proposed. High-throughput sequencing (HTS) and rapid amplification of cDNA ends (RACE) allowed the assembly of the complete sequence of each double-stranded RNA genome segment of this novel virus. The largest dsRNA segment, dsRNA1 (1699 bp), was predicted to encode a viral RNA-dependent RNA polymerase protein (RdRp) with 478 aa, and dsRNA2 (1490 bp) and dsRNA3 (1508 bp) were predicted to encode putative capsid proteins (CPs) with 347 and 348 aa, respectively. SgCV-1 has the highest amino acid sequence identity (≤ 70.80% in RdPp and ≤ 34.5% in CPs) to members of the genus Deltapartitivirus, family Partitiviridae, especially to unclassified viruses related to members of this genus. Its genome segment and protein lengths are also within the range of those of deltapartitiviruses. Moreover, phylogenetic analysis based on RdRp amino acid sequences also showed clustering of this novel virus with the related unclassified deltapartitiviruses. An RT-PCR survey of 94 imported M. sinensis samples held in quarantine identified seven additional samples carrying SgCV-1. This new virus fulfils all ICTV criteria to be considered a new member of the genus Deltapartitivirus.


Subject(s)
Genome, Viral , Plant Viruses/classification , Poaceae/virology , RNA Viruses , Viruses, Unclassified , Genomics , Open Reading Frames , Phylogeny , RNA Viruses/classification , RNA, Double-Stranded/genetics , RNA, Viral/genetics
3.
Viruses ; 13(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34452491

ABSTRACT

Rapid global germplasm trade has increased concern about the spread of plant pathogens and pests across borders that could become established, affecting agriculture and environment systems. Viral pathogens are of particular concern due to their difficulty to control once established. A comprehensive diagnostic platform that accurately detects both known and unknown virus species, as well as unreported variants, is playing a pivotal role across plant germplasm quarantine programs. Here we propose the addition of high-throughput sequencing (HTS) from total RNA to the routine quarantine diagnostic workflow of sugarcane viruses. We evaluated the impact of sequencing depth needed for the HTS-based identification of seven regulated sugarcane RNA/DNA viruses across two different growing seasons (spring and fall). Our HTS analysis revealed that viral normalized read counts (RPKM) was up to 23-times higher in spring than in the fall season for six out of the seven viruses. Random read subsampling analyses suggested that the minimum number of reads required for reliable detection of RNA viruses was 0.5 million, with a viral genome coverage of at least 92%. Using an HTS-based total RNA metagenomics approach, we identified all targeted viruses independent of the time of the year, highlighting that higher sequencing depth is needed for the identification of DNA viruses.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Plant Viruses/genetics , Saccharum/virology , Seasons , High-Throughput Nucleotide Sequencing/standards , Metagenomics , Plant Diseases/virology , Reproducibility of Results
4.
Microorganisms ; 9(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33920047

ABSTRACT

High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.

5.
Plant Dis ; 105(3): 691-694, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32720885

ABSTRACT

Fungi in the genus Clarireedia are widespread and destructive pathogens of grasses worldwide, and are best known as the causal agents of dollar spot disease in turfgrass. Here, we report genome assemblies of seven Clarireedia isolates, including ex-types of the two most widespread species, Clarireedia jacksonii and C. monteithiana. These datasets provide a valuable resource for ongoing studies of the dollar spot pathogens that include population diversity, host-pathogen interactions, marker development, and disease control.


Subject(s)
Agrostis , Ascomycota , Ascomycota/genetics , Host-Pathogen Interactions , Poaceae
6.
PLoS One ; 15(9): e0239199, 2020.
Article in English | MEDLINE | ID: mdl-32941541

ABSTRACT

Miscanthus sinensis is a grass used for sugarcane breeding and bioenergy production. Using high throughput sequencing technologies, we identified a new viral genome in infected M. sinensis leaf tissue displaying yellow fleck symptoms. This virus is most related to members of the genus Polerovirus in the family Luteoviridae. The canonical ORFs were computationally identified, the P3 coat protein was expressed, and virus-like particles were purified and found to conform to icosahedral shapes, characteristic of the family Luteoviridae. We propose the name Miscanthus yellow fleck virus for this new virus.


Subject(s)
Luteoviridae/genetics , Phylogeny , Poaceae/virology , Luteoviridae/classification , Luteoviridae/pathogenicity , Luteoviridae/ultrastructure
7.
Fungal Genet Biol ; 131: 103246, 2019 10.
Article in English | MEDLINE | ID: mdl-31254611

ABSTRACT

Boxwood blight is a disease threat to natural and managed landscapes worldwide. To determine mating potential of the fungi responsible for the disease, Calonectria pseudonaviculata and C. henricotiae, we characterized their mating-type (MAT) loci. Genomes of C. henricotiae, C. pseudonaviculata and two other Calonectria species (C. leucothoes, C. naviculata) were sequenced and used to design PCR tests for mating-type from 268 isolates collected from four continents. All four Calonectria species have a MAT locus that is structurally consistent with the organization found in heterothallic ascomycetes, with just one idiomorph per individual isolate. Mating type was subdivided by species: all C. henricotiae isolates possessed the MAT1-1 idiomorph, whereas all C. pseudonaviculata isolates possessed the MAT1-2 idiomorph. To determine the potential for divergence at the MAT1 locus to present a barrier to interspecific hybridization, evolutionary analysis was conducted. Phylogenomic estimates showed that C. henricotiae and C. pseudonaviculata diverged approximately 2.1 Mya. However, syntenic comparisons, phylogenetic analyses, and estimates of nucleotide divergence across the MAT1 locus and proximal genes identified minimal divergence in this region of the genome. These results show that in North America and parts of Europe, where only C. pseudonaviculata resides, mating is constrained by the absence of MAT1-1. In regions of Europe where C. henricotiae and C. pseudonaviculata currently share the same host and geographic range, it remains to be determined whether or not these two recently diverged species are able to overcome species barriers to mate.


Subject(s)
Buxus/microbiology , Genes, Mating Type, Fungal/genetics , Hypocreales/genetics , Phylogeography/methods , Plant Diseases/microbiology , Amino Acid Sequence/genetics , Base Sequence/genetics , Europe , Evolution, Molecular , Genetic Loci/genetics , Genome, Fungal/genetics , High-Throughput Nucleotide Sequencing , North America , Phylogeny , Polymerase Chain Reaction , Reproduction/genetics , Sequence Alignment
8.
PeerJ ; 6: e5401, 2018.
Article in English | MEDLINE | ID: mdl-30155349

ABSTRACT

Boxwood (Buxus spp.) are broad-leaved, evergreen landscape plants valued for their longevity and ornamental qualities. Volutella leaf and stem blight, caused by the ascomycete fungi Pseudonectria foliicola and P. buxi, is one of the major diseases affecting the health and ornamental qualities of boxwood. Although this disease is less severe than boxwood blight caused by Calonectria pseudonaviculata and C. henricotiae, its widespread occurrence and disfiguring symptoms have caused substantial economic losses to the ornamental industry. In this study, we sequenced the genome of P. foliicola isolate ATCC13545 using Illumina technology and compared it to other publicly available fungal pathogen genomes to better understand the biology of this organism. A de novo assembly estimated the genome size of P. foliicola at 28.7 Mb (425 contigs; N50 = 184,987 bp; avg. coverage 188×), with just 9,272 protein-coding genes. To our knowledge, P. foliicola has the smallest known genome within the Nectriaceae. Consistent with the small size of the genome, the secretome, CAzyme and secondary metabolite profiles of this fungus are reduced relative to two other surveyed Nectriaceae fungal genomes: Dactylonectria macrodidyma JAC15-245 and Fusarium graminearum Ph-1. Interestingly, a large cohort of genes associated with reduced virulence and loss of pathogenicity was identified from the P. foliicola dataset. These data are consistent with the latest observations by plant pathologists that P. buxi and most likely P. foliicola, are opportunistic, latent pathogens that prey upon weak and stressed boxwood plants.

9.
Sci Rep ; 6: 26140, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27199028

ABSTRACT

Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well as three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. This comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.


Subject(s)
Ascomycota/isolation & purification , Buxus/microbiology , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , Ascomycota/classification , Ascomycota/genetics , Computational Biology , Genomics , Sensitivity and Specificity
10.
Plant Dis ; 100(6): 1093-1100, 2016 Jun.
Article in English | MEDLINE | ID: mdl-30682271

ABSTRACT

Early and accurate diagnosis of new plant pathogens is vital for the rapid implementation of effective mitigation strategies and appropriate regulatory responses. Most commonly, pathogen identification relies on morphology and DNA marker analysis. However, for new diseases, these approaches may not be sufficient for precise diagnosis. In this study, we used whole-genome sequencing (WGS) to identify the causal agent of a new disease affecting Sarcococca hookeriana (sarcococca). Blight symptoms were observed on sarcococca and adjacent Buxus sempervirens (boxwood) plants in Maryland during 2014. Symptoms on sarcococca were novel, and included twig dieback and dark lesions on leaves and stems. A Calonectria sp. was isolated from both hosts and used to fulfill Koch's postulates but morphology and marker sequence data precluded species-level identification. A 51.4-Mb WGS was generated for the two isolates and identified both as Calonectria pseudonaviculata. A single-nucleotide polymorphism at a noncoding site differentiated between the two host isolates. These results indicate that the same C. pseudonaviculata genotype has the ability to induce disease on both plant species. This study marks the first application of WGS for fungal plant pathogen diagnosis and demonstrates the power of this approach to rapidly identify causal agents of new diseases.

11.
IMA Fungus ; 6(1): 233-48, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26203426

ABSTRACT

The genomes of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygami, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata are presented in this genome announcement. These seven genomes are from endophytes, plant pathogens and economically important fungal species. The genome sizes range from 26.6 Mb in the case of Leptographium lundbergii to 44 Mb for Chrysoporthe austroafricana. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera, and may contribute to our understanding of the lifestyles through comparative studies with closely related organisms.

12.
Genome Announc ; 3(2)2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25883288

ABSTRACT

Dactylonectria macrodidyma is part of the Nectriaceae, a family containing important plant pathogens. This species possesses the ability to induce disease on grapevine, avocado, and olive. Here, we report the first draft genome of D. macrodidyma isolate JAC15-245. The assembled genome was 58 Mbp and contained an estimated 16,454 genes.

13.
Appl Plant Sci ; 2(12)2014 Dec.
Article in English | MEDLINE | ID: mdl-25506525

ABSTRACT

PREMISE OF THE STUDY: Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. • METHODS AND RESULTS: cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens 'Vardar Valley' and sequenced using the Illumina MiSeq system. Approximately 11.9 million base pairs of sequence data were examined and 845 genic-SSRs were identified, including 469 dinucleotide, 360 trinucleotide, seven tetranucleotide, one pentanucleotide, and eight hexanucleotide repeats. Primer pairs were designed for 71 selectively chosen genic-SSRs containing trinucleotide repeat motifs and were used to amplify the corresponding loci in 18 diverse boxwood accessions. Twenty-three primer pairs amplified polymorphic loci, with two to 10 alleles per locus. • CONCLUSIONS: These novel polymorphic genic-SSR markers will aid in evaluating genetic diversity of boxwood germplasm and allow verification of hybrids and cultivars for breeding programs.

14.
Fungal Genet Biol ; 62: 25-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24161731

ABSTRACT

Fusarium verticillioides is an important plant pathogenic fungus causing maize ear and stalk rots. In addition, the fungus is directly associated with fumonisin contamination of food and feeds. Here, we report the functional characterization of Ada1, a putative Cys2-His2 zinc finger transcription factor with a high level of similarity to Aspergillus nidulans FlbC, which is required for the activation of the key regulator of conidiation brlA. ADA1 is predicted to encode a protein with two DNA binding motifs at the C terminus and a putative activator domain at the N terminus region. Deletion of the flbC gene in A. nidulans results in "fluffy" cotton-like colonies, with a defect in transition from vegetative growth to asexual development. In this study we show that Ada1 plays a key role in asexual development in F. verticillioides. Conidia production was significantly reduced in the knockout mutant (Δada1), in which aberrant conidia and conidiophores were also observed. We identified genes that are predicted to be downstream of ADA1, based on A. nidulans conidiation signaling pathway. Among them, the deletion of stuA homologue, FvSTUA, resulted in near absence of conidia production. To further investigate the functional conservation of this transcription factor, we complemented the Δada1 strain with A. nidulans flbC, F. verticillioides ADA1, and chimeric constructs. A. nidulans flbC failed to restore conidia production similar to the wild-type level. However, the Ada1N-terminal domain, which contains a putative activator, fused to A. nidulans FlbC C-terminal motif successfully complemented the Δada1 mutant. Taken together, Ada1 is an important transcriptional regulator of asexual development in F. verticillioides and that the N-terminus domain is critical for proper function of this transcription factor.


Subject(s)
Carrier Proteins/metabolism , Fusarium/physiology , Nuclear Proteins/metabolism , Reproduction, Asexual , Transcription Factors/metabolism , Carrier Proteins/genetics , Nuclear Proteins/genetics , Protein Structure, Tertiary , Repressor Proteins , Species Specificity , Spores, Fungal/physiology , Transcription Factors/genetics
15.
PLoS One ; 8(12): e82704, 2013.
Article in English | MEDLINE | ID: mdl-24349341

ABSTRACT

Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.


Subject(s)
Microfluidic Analytical Techniques , Plant Diseases , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/instrumentation , Reproducibility of Results , Sensitivity and Specificity
16.
PLoS One ; 8(7): e67656, 2013.
Article in English | MEDLINE | ID: mdl-23844049

ABSTRACT

The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.


Subject(s)
Fumonisins/metabolism , Fungal Proteins/metabolism , Fusarium/metabolism , Polymers/metabolism , Transcription Factors/metabolism , Zinc Fingers , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fusarium/genetics , Gene Deletion , Gene Expression Regulation, Fungal/drug effects , Gene Order , Gene Targeting , Mannitol/metabolism , Molecular Sequence Data , Sequence Alignment , Sorbitol/pharmacology , Sugar Alcohols/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Zinc Fingers/genetics
17.
Mol Plant Pathol ; 14(5): 518-29, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23452277

ABSTRACT

Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F. verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F. verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (Δppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (Δppr2) showed elevated fumonisin production, similar to the Δcpp1 strain. Germinating Δppr1 conidia formed abnormally swollen cells with a central septation site, whereas Δppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F. verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development.


Subject(s)
Fungal Proteins/metabolism , Fusarium/enzymology , Fusarium/physiology , Protein Phosphatase 2/metabolism , Protein Subunits/metabolism , Zea mays/microbiology , Blotting, Northern , Colony Count, Microbial , Fumonisins/metabolism , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/growth & development , Gene Deletion , Gene Expression Regulation, Fungal , Homologous Recombination/genetics , Models, Biological , Phenotype , Protein Phosphatase 2/genetics , Protein Subunits/genetics , Protein Transport , Spores, Fungal/growth & development , Spores, Fungal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...